Equidistribution of Dilations of Polynomial Curves in Nilmanifolds

نویسنده

  • MICHAEL BJÖRKLUND
چکیده

In this paper we study the asymptotic behaviour under dilations of probability measures supported on smooth curves in nilmanifolds. We prove, under some mild conditions, effective equidistribution of such measures to the Haar measure. We also formulate a mean ergodic theorem for Rn-representations on Hilbert spaces, restricted to a moving phase of low dimension. Furthermore, we bound the necessary dilation of a given smooth curve in Rn so that the canonical projection onto Tn is ε-dense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equidistribution of Sparse Sequences on Nilmanifolds

We study equidistribution properties of nil-orbits when the time parameter is restricted to the range of some sparse sequence that is not necessarily polynomial. For example, we show that if X = G/Γ is a nilmanifold, b ∈ G is an ergodic nilrotation, and c ∈ R \ Z is positive, then the sequence (b cΓ)n∈N is equidistributed in X. This is also the case when n c is replaced with a(n), where a(t) is...

متن کامل

Equidistribution of Expanding Translates of Curves and Dirichlet’s Theorem on Diophantine Approximation

We show that for almost all points on any analytic curve on R which is not contained in a proper affine subspace, the Dirichlet’s theorem on simultaneous approximation, as well as its dual result for simultaneous approximation of linear forms, cannot be improved. The result is obtained by proving asymptotic equidistribution of evolution of a curve on a strongly unstable leaf under certain parti...

متن کامل

On 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type

‎In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five‎. ‎Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces‎. ‎Moreover‎, ‎we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...

متن کامل

The Dynamical André-oort Conjecture: Unicritical Polynomials

We establish the equidistribution with respect to the bifurcation measure of postcritically finite maps in any one-dimensional algebraic family of unicritical polynomials. Using this equidistribution result, together with a combinatorial analysis of certain algebraic correspondences on the complement of the Mandelbrot set M2 (or generalized Mandelbrot set Md for degree d > 2), we classify all c...

متن کامل

Effective Equidistribution for Closed Orbits of Semisimple Groups on Homogeneous Spaces

We prove effective equidistribution, with polynomial rate, for large closed orbits of semisimple groups on homogeneous spaces, under certain technical restrictions (notably, the acting group should have finite centralizer in the ambient group). The proofs make extensive use of spectral gaps, and also of a closing lemma for such actions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008